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not directly yield site-resolved operations in a multi-
qubit array. Single-site selectivity can be achieved with 
microwaves using a magnetic field gradient [2], or tightly 
focused Stark shifting beams [3–6], or with focused two-
frequency Raman light [7, 8].

In order to achieve as high a fidelity as possible for qubit 
rotations the field strength must be precisely controlled at 
the location of the atom. Finite temperature position fluc-
tuations or jitter in the alignment of optical beams leads to 
gate errors due to variation of the optical intensity inter-
acting with the atom. There is also a second cause of gate 
errors due to variations in the differential Stark shift expe-
rienced by an atom as a function of location in an optical 
trap. Both the spatially varying trap intensity and the spa-
tially varying Raman intensity lead to a variable Stark shift, 
and hence position-dependent qubit detuning errors. While 
these errors can be minimized by cooling to the motional 
ground state of the trap, ground-state cooling tends to take 
longer than cooling to a thermal state, and any heating 
sources lead to motional excitation.

In light of these effects it is of interest to design the 
experimental control system to minimize errors due to 
atomic motion or beam misalignment. It is known that 
using beams with more uniform intensity profiles can 
lead to improved fidelity of Rabi oscillations [9, 10] and 
that specially shaped beams have the potential for reduced 
crosstalk [11]. In this paper we present a detailed analysis 
of the fidelity of qubit rotations driven by two-frequency 
Raman light. We investigate how modifying the beam 
shape from the typical Gaussian profile of a laser beam to 
a super Gaussian with a “top-hat” like profile can reduce 
the effects of intensity variations and simultaneously 
minimize crosstalk to neighboring qubit sites. Numerical 
simulations are used to quantify the effects of the thermal 
motion of trapped atoms as well as radial and axial control 

Abstract   We study the fidelity of single-qubit quantum 
gates performed with two-frequency laser fields that have a 
Gaussian or super Gaussian spatial mode. Numerical simu-
lations are used to account for imperfections arising from 
atomic motion in an optical trap, spatially varying Stark 
shifts of the trapping and control beams, and transverse 
and axial misalignment of the control beams. Numeri-
cal results that account for the three-dimensional distribu-
tion of control light show that a super Gaussian mode with 
intensity I ∼ e

−2(r/w0)
n

 provides reduced sensitivity to 
atomic motion and beam misalignment. Choosing a super 
Gaussian with n = 6 the decay time of finite temperature 
Rabi oscillations can be increased by a factor of 60 com-
pared to an n = 2 Gaussian beam, while reducing crosstalk 
to neighboring qubit sites.

1  Introduction

Atomic qubits encoded in hyperfine ground states are one 
of several approaches being developed for quantum com-
puting experiments [1]. Single-qubit rotations can be per-
formed with microwave radiation or two-frequency laser 
light driving stimulated Raman transitions. The micro-
wave approach, while simpler in implementation, does 
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beam misalignment on the fidelity of Rabi oscillations with 
finite temperature atoms. We show that the super Gaussian 
beam can dramatically reduce both motional dephasing and 
crosstalk to neighboring sites. While we specifically ana-
lyze the case of two-frequency Raman light we expect that 
our results will also be applicable to localized gates that 
rely on microwaves with focused Stark shifting beams.

In Sect. 2, we describe how to calculate the three-dimen-
sional (3D) intensity profiles of Gaussian and super Gauss-
ian beams, define the density-weighted intensity variance, 
discuss the optical trap geometry used in our simulations, 
and review how the two-photon Rabi transitions in  133Cs 
depend on the position of the atoms due to the intensity pro-
files of the trapping and control lasers. In Sect. 3, we present 
our calculation results for the 3D intensity profile of super 
Gaussian beams as well as the effects of atom temperature 
and control beam misalignment on the density-weighted 
intensity variance and the Rabi oscillations of the atomic 
qubits, before summarizing our conclusions in Sect. 4.

2 � Theory

In this section, we theoretically investigate the effects of 
using a super Gaussian beam to address the atoms instead 
of a TEM00 Gaussian beam. First, we define what consti-
tutes a super Gaussian beam for this investigation. Then we 
present a model to calculate the propagation of the super 
Gaussian beam in order to have a complete three-dimen-
sional (3D) mapping of the electric field and intensity dis-
tributions. In Sect. 3, we use the 3D intensity distributions 
to quantitatively compare the spatial intensity variations 
between Gaussian and super Gaussian beams and their 
subsequent effects on Rabi oscillations of trapped atoms to 
compare the evolution of the qubit states for super Gauss-
ian addressing beams to TEM00 addressing beams.

The position-dependent variations in the differential AC 
Stark shifts result in reduced flopping amplitudes, faster decay 
of the Rabi oscillations, and changes to the Rabi frequency 
due to position-dependent variations in the electric field of 
the light experienced by the atom. The dominant contribu-
tion to the differential AC Stark shift at the location of each 
trap site is that of the addressing laser beam. Thus, to elimi-
nate the position-dependent differential AC Stark shifts of the 
atomic states, one would ideally use an addressing beam with 
a uniform intensity over the entire trap volume; i.e., a flat-top 
beam profile. However, for qubit operations tight focusing is 
required to address a single qubit without crosstalk at neigh-
boring qubit sites. Also, the sharp spatial features required for 
flat-top beams in the focal plane result in undesired spatial 
oscillations away from the focal plane. It is therefore neces-
sary to consider both the uniformity of the intensity and spatial 
crosstalk when selecting an optimized beam profile.

2.1 � Gaussian versus super Gaussian beams

If the addressing beam is a TEM00 Gaussian beam then the 
electric field of the beam can be analytically modeled in 
three dimensions using [12]

where E0 is the amplitude of the electric field at the center 
of the focal plane, or x = y = z = 0. Because I ∝ |E|2, the 
corresponding three-dimensional intensity distribution is

where I0 is the intensity at the center of the focal plane, the 
Gaussian width (radius where the intensity is e−2 of the 
peak value) as a function of axial distance from the plane 

of the beam waist, w(z), is w(z) = w0

√

√

√

√
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z2

z20

)

, where 

z0 = πw2
0/� is the Rayleigh Range, and w0 is the Gaussian 

beam waist in the focal plane, and the beam radius of cur-
vature is R(z) = z(1+ z20/z

2).
Super Gaussian beams are light patterns whose intensity 

profiles reside in the regime between smoothly propagating 
TEM00 Gaussian beams and pure flat-top beams. A super 
Gaussian beam is defined here as one whose intensity profile 
at the beam waist follows the mathematical function [13]

and n is the order of the super Gaussian. We also define the 
phase front in the z = 0 plane to be planar and perpendicular 
to the propagation direction. For super Gaussian beams the 
axial location of the peak intensity, or the axial location of 
the narrowest beam distribution, is not the same as the loca-
tion of the planar wave front which we refer to as the “beam 
waist,” the focal plane, or the z = 0 plane; as is discussed 
further in Sect. 3.1.

If the super Gaussian has order 2 then the beam profile 
is that of a TEM00 Gaussian beam in the focal plane, and 
the beam propagates exactly as a TEM00 Gaussian beam 
would for axial locations away from the beam waist plane. 
As the order n of the super Gaussian increases, the effect 
on the beam waist profile is to widen and flatten the cen-
tral intensity peak of the beam while increasing the rate of 
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change of the intensity of the sides of the beam as illus-
trated in Fig. 1. As we show in the following a super Gauss-
ian with n = 6 provides significant improvement of gate 
fidelity and reduction of crosstalk. Although the intensity 
difference between the n = 6 beam and n = 4 or n = 8 is 
not more than ∼20 % the performance improves by a much 
larger factor. It is therefore important to accurately prepare 
the desired beam profile. We discuss possible methods for 
doing so in Sect. 4.

Unlike TEM00 Gaussian beams where the electric field 
at any point in space can be analytically determined using 
Eq. (1), an analytical form for super Gaussian beams in 
all space does not exist. The analytical form given in Eq. 
(3) is only valid for points within the plane containing the 
beam waist, or (x, y, 0). For any points outside of the beam 
waist plane the electric field at the point of interest must be 
determined using beam propagation methods and numeri-
cal integration. Scalar diffraction theory can be used to cal-
culate the propagated electric field behind the focal plane. 
The model chosen here for determining the electric field at 
the point of interest is the Rayleigh–Sommerfeld diffrac-
tion integral [12, 14]. Rayleigh–Sommerfeld diffraction is 
a scalar diffraction model which integrates the known field 
values over an input plane, (x0, y0, z0 = 0), and propagates 
the field to a particular point of interest, (x, y, z) using

where k is the wave number, and ρ is the distance from the 
integration point to the point of interest, or

In this investigation, it is assumed that the input plane for 
the Rayleigh–Sommerfeld diffraction integral coincides 
with the axial location of the beam waist, and that the 
phase front of the electric field is planar with the direction 
of energy propagation to be the +z-direction for all points 

(4)E(x, y, z) =
kz

i2π

�
Ez0=0

eikρ

ρ2

(

1−
1

ikρ

)

dx0 dy0,

ρ(x0, y0, z0 = 0, x, y, z) =

√

(x − x0)2 + (y− y0)2 + z2.

within the beam waist plane. Using these assumptions, the 
known electric field term in Eq. (4) can be simply written 
as

Substitution of Eq. (5) into Eq. (4) and numerically inte-
grating over the input plane for a desired point of interest 
with z > 0 one obtains the scalar value of the electric field 
at the point of interest.

2.2 � Density‑weighted intensity variance

If the intensity of the addressing beam is not uniform 
over the entire volume of the trap site then as the atom 
moves within the trapping volume it samples different 
intensity values resulting in position-dependent variations 
in the differential AC Stark shifts between atomic states 
and Rabi frequency of atomic transitions. In order to help 
quantify the total variation of intensities an atom at a par-
ticular temperature would be exposed to we can calculate 
a density-weighted intensity variance (which we will sub-
sequently refer to as the “intensity variance”), or σIΨ. We 
quantitatively define the intensity variance to be

where the integration is performed over all space and 
In(x, y, z) =

I(x,y,z)
I0

 is the normalized position-dependent 
intensity of the addressing beam, I0 is the peak intensity 
in the input beam waist plane, and Ψ  is the normalized 
wavefunction of the harmonically trapped atom with tem-
perature-dependent widths σx, σy, and σz, as discussed in 
the next section. By inspection, we see that if the intensity 
distribution, I, is a uniform constant for all space where 
the wavefunction Ψ  is nonzero then σIΨ would be zero. 
Thus, the higher the variation of intensity the atom sam-
ples during the time which it is exposed to the addressing 
beam, the larger the value of σIΨ.

2.3 � Dipole trap formed by Gaussian beams

For the detailed analysis of the intensity variance, cross-
talk, and Rabi oscillations we have assumed blue-detuned 
optical traps using the 49 site Gaussian beam array intro-
duced in [15]. Each trapping site is formed by the inten-
sity overlap of four Gaussian beams, each of power P, in a 
unit cell of the array with area d × d. The trapping poten-
tial is

(5)Ez0=0 = E0e
−

(

r
w0

)n

.

(6)σ 2
IΨ =

∫

I2n |Ψ |
2dv −

[∫
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2dv

]2

,
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Fig. 1   (Color online) Radial intensity profiles for super Gaussian 
beams of orders n = 2, 4, 6, 8, and 10
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where α is the atomic polarizability, and IT is the intensity 
found by adding the contributions from the four beams 
forming a unit cell of the array. Following the analysis in 
[15, 16] we find the trap spring constants 

 Here s = d/w0 with d the array period, w0 the waist of 
each trapping beam, Ud =

α
2ǫ0c

Id, and Id = P/d2 is the 
average intensity of each unit cell. The corresponding trap 
frequencies are ωj =

√

κj
ma

, where ma is the atomic mass, 
and j = x, y, z. Using the relationship 1

2
κjσ

2
j =

1
2
kBT , the 

time-averaged position variances are 

 Equations (8) and (9) are the same as Eqs. (10) and (11) 
from [15], except for corrections to Eqs. (10c) and (11c). 
The parameters σx0 and σz0 are defined as

(8a)κx =
32|Ud |

πd2
s4
(

s2 − 1
)

e−s2 ,

(8b)κy = κx,

(8c)κz =
16�2|Ud |

π3d4
s6
(

s2 − 1
)
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(9a)σ 2
x = σ 2

x0

es
2

s4
(
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) ,

(9b)σ 2
y = σ 2

x ,

(9c)σ 2
z = σ 2
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2es
2

s6
(

s2 − 1
) .

σx0 =

√

πd2kBT

32|Ud |
, σz0 =

√

π3d4kBT

32�2|Ud |
,

s = 2.197), and a laser power of 3 W, split into 64 equal 
laser beams so P = 0.047W. The polarizability α780 for 
the 780-nm trap light was calculated using a standard sum 
over states expression [17] including the 6P1/2,3/2 and 
7P1/2,3/2 levels in Cs. Using numerical values from [18, 
19] for the transition wavelengths and dipole matrix ele-
ments we find α780,cgs = −250.× 10−24 cm3 in cgs units 
and in SI units α780,SI = (4πǫ0)α780,cgs.

2.4 � Rabi oscillations

A two-level atom interacting with a monochromatic 
field undergoes Rabi oscillations between its two lev-
els. We will designate the two states as ground (lower) 
state |g� and excited (upper) state |e� with energies 
�ωg and �ωe, respectively. Writing the state vector as 
|ψ� = cg(t)e

−ıωgt
|g� + ce(t)e

−ıωet
|e� the Schrödinger equa-

tion in the rotating wave approximation takes the form 

with ∆ = ω − ωeg, ω is the optical frequency, ωeg = ωe − ωg,  
the Rabi frequency is Ω = degE/� where deg = −e�e|r̂|g� is 
the matrix element of the dipole operator ˆd = −er̂ , and e is 
the elementary charge.

Solving this system of coupled differential equations 
results in the solution

where t0 is the initial time and

(10a)
dcg

dt
= i

Ω∗

2
cee

ı∆t ,

(10b)
dce

dt
= i

Ω

2
cge

−ı∆t ,

(11)

(

cg(t)

ce(t)

)

= M ·

(

cg(t0)

ce(t0)

)

,

where kB is Boltzmann’s constant and T is the atom tem-
perature. For our calculations, we used a trap spacing of 
d = 3.8µm, a � = 780 nm trap wavelength, a laser beam 
waist of 1.73 µm (making the normalized array period 
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with the effective off-resonance Rabi frequency 
Ω ′

=

√

|Ω|
2
+∆2. When the atom is initially in the 

ground state, the time-dependent probabilities to be in the 
ground and excited states are found to be
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We see that the ground- and excited-state probabilities 
undergo Rabi oscillations with the effective off-resonance 
Rabi frequency Ω ′.

2.5 � Rabi oscillations due to Raman transitions in 133Cs

In this work, we investigate the Rabi oscillations due 
to a two-photon stimulated Raman transition from the 
62S1/2,F = 3,mF = 0 state of 133Cs, corresponding to the 
lower state |g� from Sect.  2.4, to 62S1/2,F = 4,mF = 0 , 
corresponding to the upper state |e� from Sect.  2.4 via 
the 72P1/2 state driven by a pair of 459-nm Raman laser 
beams. In order to calculate the evolution of the F = 4 pop-
ulation with time, we need to use the appropriate on-reso-
nance Rabi frequency Ω and detuning ∆ for this two-pho-
ton transition. As shown in the Appendix, the two-photon 
Rabi frequency for a Λ-type coupling scheme with resolved 
excited-state hyperfine structure is

with

where i = 1, 2 refers to Raman laser beams 1 and 2, 
respectively, ∆R is the detuning of the first Raman 
laser from the 62S1/2,F = 3 → 72P1/2 (fine struc-
ture level) transition, and ∆F′3 = −2π × 212.3MHz 
and ∆F′4 = 2π × 165.1MHz are the hyperfine shifts 
from the 72P1/2 fine structure level to the F ′

= 3 and 4 
hyperfine states, respectively. E1,2 refers to the electric 
field amplitudes of Raman lasers 1 and 2, respectively. 
e�72P1/2||r̂||6

2S1/2� = 0.276ea0 is the reduced dipole 
matrix element for the 62S1/2 → 72P1/2 transition in 133Cs 
[19], and a0 is the Bohr radius.

As we discuss in the next section, the detuning, ∆, for 
our calculation will be due to changes in the differential AC 
Stark shift between the 62S1/2,F = 3 and F = 4 hyperfine 
ground states. There are two contributions to the differ-
ential Stark shift, one from the Raman addressing beams, 
∆acR, and one from the trap light, ∆acT, so

Since the Raman laser beams are near resonant to the 
62S1/2 → 72P1/2 transition, the differential AC Stark shift 
due to the Raman beams is (see the “Appendix” for the 
derivation)

(13)

|cg(t)|
2
= cos

2

(

Ω ′t

2

)

+

∆2

|Ω|
2
+∆2

sin
2

(

Ω ′t

2

)

,

|ce(t)|
2
=

|Ω|
2

|Ω|
2
+∆2

sin
2

(

Ω ′t

2

)

.

(14)Ω =

Ω1,0Ω
∗

2,0

32

(

1

∆R −∆F′3

+

5/3

∆R −∆F′4

)

,

Ωi,0 = Eie�7
2P1/2||r||6

2S1/2�/�,

(15)∆ac = ∆acR +∆acT .

where ∆hf = 2π × 9.192631770  GHz is the ground-
state hyperfine splitting in 133Cs. Here, we have assumed 
that both Raman beams have the same power, waist, and 
alignment, so that Ω1,0 = Ω2,0. For the differential Stark 
shift due to the far-detuned 780-nm trap laser, we use the 
expression

where α is the polarizability of the 62S1/2 state in 133Cs in 
SI units and ET is the electric field amplitude of the trap 
light. ∆T is the effective detuning of the trap laser from 
the D1 and D2 transitions in 133Cs, given by [20–22] 
1
∆T

=
1
3

1
∆D1

+
2
3

1
∆D2

 with ∆D1 = 2π
(

c
780 nm

−
c

894 nm

)

 and 
∆D2 = 2π

(

c
780 nm

−
c

852 nm

)

.

2.6 � Position dependence of Rabi oscillations

Thus far, we have assumed that the intensity of the light 
field and the atomic energy levels are uniform throughout 
space. However, the electric field amplitudes E1, E2, and 
ET , depend on the position of the atom in the Raman beams 
and in the trap, so

Therefore, the effective on-resonance Rabi frequency Ω 
and the differential AC Stark shifts ∆acR and ∆acT due to 
the Raman lasers and the trap light, respectively, depend on 
the position of the atom. Consequently, as the atom moves 
through the trap, Ω and ∆ will change with time. Thus, to 
calculate the Rabi oscillations of an atom in our system, 
Eq. (11) must be solved numerically in small time steps 
to account for these changes with time as the atoms are 
moving.

The electric field strength |E | is related to the 
light intensity I(x, y, z) at the location of the atom by 

|E(x, y, z)| =

√

2I(x,y,z)
ǫ0c

. For Gaussian addressing beams of 

waist w0, this intensity is calculated from the laser power P 
at the atoms as

with I0 = 2P

πw2
0

 and

(16)

∆acR =

|Ω1,0|
2

64

(

1

∆R −∆F′3 +∆hf

+

5/3

∆R −∆F′4 +∆hf

−

1

∆R −∆F′3 −∆hf

−

5/3

∆R −∆F′4 −∆hf

)

.

(17)∆acT = −

α

4

∆hf

∆T

|ET |
2

�
,

E1,2,T = E1,2,T (x, y, z).

(18)I(x, y, z) = I0In(x, y, z)

In(x, y, z) =
1

1+ (z/zo)2
exp

[

−2

(

x2 + y2
)

w2(z)

]

.



K. Gillen-Christandl et al.

1 3

 131   Page 6 of 20

For the super Gaussian addressing beams, we used the 
same maximum intensity, I0, as for the Gaussian beams, 
multiplied by the numerically calculated normalized inten-
sity profiles, In(x, y, z), as described in Sect. 2.1.

In the calculations, we used Raman laser beams of iden-
tical power and waists that are perfectly aligned with each 
other, so E1 = E2. From Eqs. (14, 18) we thus find the posi-
tion-dependent on-resonance Rabi frequency for evaluating 
Eq. (11) to be

Because the atoms are moving, for each time step the posi-
tion of the atom must be calculated and the on-resonance 
Rabi frequency for that atom determined in order to evalu-
ate Eq. (11).

By the same means, using Eq. (16), we find that the dif-
ferential Stark shift due to the Raman laser beams is

The position-dependent differential Stark shift due to the 
trap light can be obtained using UT = −

1
4
α|ET |

2 and Eq. 
(17) as

leading to a total differential Stark shift of

As for the detuning ∆ from Eq. (12), we tune the Raman 
lasers exactly to the 62S1/2,F = 3 to F = 4 hyperfine 
ground-state transition, taking into account the AC Stark 
shifts from the trap and Raman lasers for an atom at the 
center of the trap and assuming the Raman laser beams are 

Ω(x, y, z) = Ω(0, 0, 0)In(x, y, z).

∆acR(x, y, z) = ∆acR(0, 0, 0)In(x, y, z).

∆acT (x, y, z) =
∆hf

∆T

UT (x, y, z)

�
,

∆ac(x, y, z) = Ω(0, 0, 0)In(x, y, z)+
∆hf

∆T

UT (x, y, z)

�
.

perfectly centered. Therefore, ∆ will be the difference of 
the differential Stark shift of an atom at position x, y, z from 
that at the center of the trap and addressing laser beams. 
Since the atoms are moving, this needs to be evaluated at 
each time step.

3 � Calculations and simulations

3.1 � Super Gaussian beam propagation

In this manuscript we want to duplicate the experimental 
setup used in Ref. [15] and investigate the effects of using 
super Gaussian beams for the addressing laser instead of 
a TEM00 Gaussian beam. Therefore, the parameters used 
for the computations for the TEM00 Gaussian beam largely 
match those used in the experiment. For this reason, the 
width of the Gaussian beam, wn=2, for this investigation 
was chosen to be 2.30 µm. As observed in Fig. 1, when the 
super Gaussian order n increases both the region of uni-
form intensity and the magnitude of the ramp rate of the 
intensity outside of the central region increase. For radial 
values of r < w the intensity of the beam increases with the 
order n, and for radial values of r > w the intensity of the 
beam decreases as the order n increases. There is a trade-
off to be considered when deciding what width to use for 
each super Gaussian beam order: A larger width increases 
the size of the central uniform intensity volume, but may 
increase the crosstalk intensity at the location of a neigh-
boring site in the case of radial misalignment.

All experimental beams have radial and axial misalign-
ment, or jitter, due to experimental conditions; i.e., mechan-
ical vibrations in the optical equipment and air currents in 
the laboratory room. If the beam widths for n > 2 super 
Gaussian beams are chosen such that the crosstalk inten-
sity is equal to that of n = 2 at r = d, then all super Gauss-
ian beams will have much higher variations in the crosstalk 
intensity due to radial jitter and the steeper intensity ramp 
rates, an undesired outcome. Thus, we have set the widths 
of the super Gaussian beams such that the crosstalk inten-
sity for each value of n is less than, or equal to, that of a 
centered TEM00 Gaussian beam up to a maximum accept-
able value of radial jitter, r0; i.e., the worst-case crosstalk 
scenario for a misaligned super Gaussian beam is equal to 
the best-case scenario of a centered Gaussian beam, or

or, using Eq. (3),

where w0 is the Gaussian beam waist, d is the distance to 
the nearest neighbor, and the maximum acceptable radial 

In>2(r = d − r0, z = 0) = In=2(r = d, z = 0),

(19)wn =

(w0

d

)2/n

(d − r0),

Table 1   List of parameters used for the various possible addressing 
laser beams

The width of the super Gaussian beams is chosen such that the cross-
talk intensity, I, at a neighboring trap site is lower than, or equal to, 
that of a Gaussian beam even if the super Gaussian beam has a radial 
jitter up to a maximum allowable value of r0. I0 is the intensity at the 
center of the focal plane of the Gaussian beam

Parameter Value I/I0 I/I0

(r = d) (r = d − r0)

Wavelength, � 459 nm

Trap spacing, d 3.8 µm

Radial jitter, r0 150 nm

wn=2 2.30 µm 0.0043 0.0065

wn=4 2.84 µm 0.0017 0.0043

wn=6 3.09 µm 0.0010 0.0043

wn=8 3.22 µm 0.0006 0.0043

wn=10 3.30 µm 0.0003 0.0043
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jitter, r0, is chosen to be 150  nm. This value was chosen 
based on estimates of day-to-day misalignment observed 
when taking data in a 2D qubit array [3, 23]. Equation (19) 
yields the width, wn, for each super Gaussian beam. All of 
the parameters used for the various addressing beams, as 
well as the crosstalk intensity values, are summarized in 
Table 1.

Substituting Eq. (5) into Eq. (4) and integrating, we 
obtain the electric field of the super Gaussian beam at 
points beyond the input plane. Figure 2 is a collection of 
calculation results for the propagation of super Gauss-
ian beams with various orders n and a light wavelength of 
459  nm. Figure  3 is a collection of contour plots for the 
same super Gaussian beams depicted in Fig. 2. For each of 
the figures the focal plane, z = 0, is located at the bottom 
of the plot and the beam propagation direction (increasing z 
values) is toward the top of the page.

As observed in Fig. 2, the propagation of a super Gauss-
ian beam is quite different than that of a Gaussian beam. A 
few notable differences between a Gaussian beam, n = 2, 
and a super Gaussian beam are apparent in variations in the 
radial intensity distributions as a function of location along 
the beam propagation direction, and merit some discussion.

The radial intensity profiles for both Gaussian and super 
Gaussian beams at the focal plane are illustrated in Fig. 1. 
As mentioned previously, the radial beam profile for n = 2 
has a Gaussian shape for all axial locations, and the high-
est intensity is found at the center of the beam in the focal 
plane. The radial beam profile for super Gaussian beams 
changes in a variety of different ways as a function of 
the axial location. First, for all super Gaussian orders, as 
the beam propagates in the +z-direction the width of the 
central uniform intensity region narrows, while the cen-
tral intensity reaches a maximum value much higher than 
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Fig. 2   (Color online) Image plots of the addressing beam inten-
sity for a TEM00 Gaussian beam, n = 2, and super Gaussian beams 
of orders n = 4, 6, and 8. The parameters of the beams are given in 
Table 1. For each image plot, the focal plane is located at the bottom 
of the figure with the propagation direction toward the top of the page
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Fig. 3   (Color online) Contour plots of intensity distributions illus-
trated in Fig. 2. The parameters of the beams are given in Table 1. For 
each plot, the lowest intensity contour line is for a normalized inten-
sity of 0.0043; i.e., the normalized intensity at a nearest neighbor trap 
site for a TEM00 addressing laser beam
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I0 some distance away from the focal plane. Second, for 
super Gaussian orders greater than n = 4 as the beam 
propagates away from z = 0 oscillations in the intensity 
are observed in both the radial and axial directions. These 
variations in the intensity are more apparent in the contour 
plots of Fig.  3 and the on-axis intensity plots illustrated 
in Fig. 4. As the order of the super Gaussian increases, so 
does the number and amplitude of axial and radial oscilla-
tions of the intensity. Finally, the divergence of the beam 
for very low normalized intensities grows significantly as 
the order of the super Gaussian increases, as observed in 
the lowest normalized intensity value contour line for each 
plot in Fig. 3.

The lowest contour line for each plot in Fig. 3 has been 
manually set to a normalized intensity value of 0.0043. This 
particular value for the lowest common contour line for 
all plots was chosen because that is the normalized inten-
sity in the focal plane at the center of a neighboring trap 
site for the experimental Gaussian beam parameters mod-
eled in this investigation and discussed in Sect.  3.3. The 

normalized intensity at a neighboring trap site represents a 
measure of the crosstalk between an addressing beam for 
an atom in the trap site being addressed and another atom 
located in an adjacent trap. The width used for each super 
Gaussian beam is such that the crosstalk normalized inten-
sity value in the focal plane is the same for all super Gauss-
ian orders if the beam has a maximal radial offset of r0.

The divergence of the beam can become a significant 
factor for either of two scenarios: (1) if the axial size of 
the trapping volume overlaps with the divergence of an 
addressing beam for a neighboring trap site or (2) if there 
is an axial misalignment, or jitter, between the focal plane 
of the addressing beam and the plane of the array of trap 
sites. For reference, the axial confinement of atoms in these 
traps for the parameters used in Ref. [15] and this work, is 
σz ≈ 1− 2µm.

Figure 5 illustrates the increasing beam divergence with 
increasing super Gaussian order. Figure 5a is a plot of the 
radial intensity distribution at the focal plane, or z = 0 . The 
vertical gray lines represent the location of a neighboring 
trap site located at a radial distance of r = d. Note that all 
super Gaussian beams have a normalized intensity value at 
a neighboring trap site lower than that of a TEM00 beam 
because we accounted for possible jitter up to r0 in our 
choice for the widths of the super Gaussian beams. Also 
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Fig. 5   (Color online) Plots of the normalized radial intensity distri-
bution of a 459-nm addressing laser beam as a function of radial dis-
tance from the center of the beam (a) in the focal plane and (b) at 
an axial distance of 5 µm beyond the focal plane. Vertical gray lines 
mark the location of the nearest neighbor trap site, or r = 3.8µm. 
Beam parameters for these calculations are given in Table 1
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note that for radial distances greater than d the normalized 
intensity for all super Gaussian beams drops off faster with 
radial distance for higher values of n. Figure 5b is a plot of 
the radial intensity distributions at a distance of z = 5µm 
from the focal plane. By visually comparing (b) to (a) we 
can see that the normalized intensity value of super Gauss-
ian beams at a radial distance of d, and beyond, is now sig-
nificantly higher for increasing super Gaussian orders illus-
trating the greater divergence of super Gaussian beams as 
they propagate away from the focal plane.

When choosing which type of beam to use to address the 
target atom an important side effect to continually monitor 
is the crosstalk intensity of the addressing beam on an atom 
in an adjacent trap site. Beam misalignment, or jitter, of the 
addressing beam can negatively affect the state of an atom 
in a neighboring trap site due to the crosstalk intensity.

To help illustrate how the crosstalk intensity depends 
upon the axial misalignment between the focal plane of 
the super Gaussian beam and the plane of the trap arrays, 
Fig. 6a is a plot of the normalized intensity value as a func-
tion of axial distance from the focal plane for a fixed radial 
distance of 3.8µm from the center of the addressing beam. 
The axial misalignment values where the crosstalk intensity 

for super Gaussian powers of n = 8, 6, and 4, is equal to 
that of a misaligned Gaussian beam are z = 1.36, 2.10, and 
3.90 µm, respectively. If the axial misalignment is smaller 
than these values, the crosstalk intensity at a neighboring 
trap site is lower for the respective super Gaussian beam 
orders than it is for the TEM00 beam. If the axial misalign-
ment is greater than these values, the crosstalk intensity is 
lower for the TEM00 than the respective Gaussian beam 
orders.

Figure  6b illustrates the dependence of the crosstalk 
intensity at a neighboring trap site on radial misalignment 
of the addressing laser beam. Here, the reasoning behind 
our choice for the widths of the super Gaussian beams, 
according to Eq.  (19), is visually illustrated. As the order 
of the super Gaussian beam increases, the crosstalk inten-
sity at a neighboring trap site changes much more rapidly 
than for a Gaussian beam. The point at which the n = 4, 6, 
and 8 curves are all equal is for a radial misalignment equal 
to that of our chosen maximum acceptable jitter value, or 
r = r0 = 150 nm. If parameter r0 is not included in Eq. (19) 
(or set to zero) then the crosstalk intensity for all values of n 
would be the same for an aligned addressing beam; i.e., the 
curves of Fig. 6b would all cross at a radial misalignment 
of zero. However, if any jitter was present (as is always 
the case with experimental laser beams) then the crosstalk 
intensity at a neighboring trap site would be significantly 
worse for any value of n > 2. By including the maximum 
acceptable jitter parameter, r0, into our choice for the width 
of each super Gaussian beam, the higher crosstalk intensity 
values for n > 2 are pushed radially out beyond our chosen 
acceptable amount of jitter. The radial misalignment values 
where the crosstalk intensity for super Gaussian powers of 
n = 8, 6, and 4, is equal to that of the Gaussian beam are 
r = 194, 212, and 287 nm, respectively.

3.2 � Density‑weighted intensity variance calculations

An atom confined within a Gaussian beam array 
trap and exposed to addressing beams will exist in a 
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Fig. 6   (Color online) Calculations for the crosstalk intensity at the 
location of a neighboring trap site at d = 3.8µm a as a function of 
axial misalignment between the focal plane of the addressing beam 
and the plane containing the array of trap sites and b as a function 
of radial misalignment of the addressing beam for the focal plane of 
the beam coplanar with the trap site array. Beam parameters for these 
calculations are given in Table 1

Table 2   Intensity variance values for a 20 µK atom in a Gaussian or 
super Gaussian beam with no misalignment between the trap site and 
the 459-nm wavelength addressing laser

The value of each beam radius at the focal plane z = 0 used in the 
calculations is given in Table 1 and repeated here for convenience

n Beam radius (µm) σIΨ

2 2.30 0.01

4 2.84 0.003

6 3.09 0.00007

8 3.22 0.0004

10 3.30 0.002
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three-dimensional volume having a spatial variation in the 
intensity of the addressing and trapping beams. Conse-
quently, the atom will experience position-dependent dif-
ferential AC Stark shifts and Rabi frequencies. In this sec-
tion, we computationally investigate the magnitude of the 
spatial intensity variations an atom at a particular tempera-
ture will experience by calculating the density-weighted 
intensity variance described by Eq. (6). As discussed in 
Sect. 2.2, the more uniform the addressing beam intensity 
is over the volume of space occupied by the atom, the lower 
the value of the intensity variance. If the volume occupied 
by the trapped atom is flooded with a uniform address-
ing beam intensity then the value of the intensity variance 
would be zero.

First, we will investigate the intensity variance for a 
perfectly aligned addressing beam; i.e., the beam waist is 
coplanar with the array of trap sites, and the addressing 
beam is colinear with the trapping axis. Table 2 is a collec-
tion of intensity variance values for these alignment condi-
tions and an addressing laser beam with increasing values 
of the order n of the super Gaussian. All of the intensity 
variances reported in Table 2 are for a trap spacing of 3.8 
µm, a trap laser waist of 1.73 µm, and an atomic tem-
perature of 20 µK, which yields, using Eqs. (9), a radial 
and axial confinement of σx = 0.17 µm and σz = 1.8 µm , 
respectively. The trap laser waist was chosen such that 
s = d

w0
= 2.197, the optimum s for the deepest trap from 

[15]. The choices for the parameters for the Gaussian and 
super Gaussian addressing beam are discussed in Sect. 3.1 
and given in Table 1.

As the value of n increases from 2 to 4 to 6, we see that 
the intensity variance decreases due to the three-dimen-
sional beam intensity distribution becoming more uniform 
over the volume of space occupied by the atom. As the 
value of n increases from 6 to 8 to 10 the intensity variance 
actually increases with an increase in the order of the super 
Gaussian. Within the plane of the beam waist, the intensity 
distribution continues to become more uniform in the cen-
tral region of the beam, as observed in Fig. 1. However, it is 
the increase in the oscillations of the intensity distribution 
of the beam outside of the beam waist plane, as observed in 
Figs. 3 and 4, which force the intensity variance to increase 
as n increases from 6 to 8 to 10. Even for the limited 
axial range of the trapping volume (out to approximately 
z = 1.8µm for a 20 µK atom) we can see in the contour 
plots in Fig. 3 that the number and frequency of intensity 
oscillations in the middle of the trapping volume noticeably 
increase from n = 6 to n = 8.

Second, we investigate the intensity variance for a radial 
misalignment between the addressing beam and the trap 
site as a function of the order n of the super Gaussian beam. 
For these conditions, it is assumed that the volume occu-
pied by the atom is axially and radially located at the center 

of the Gaussian beam array trap (x = y = z = 0). The 
addressing beam is assumed to be normal to the plane of 
the array (the X–Y plane) with the beam waist plane copla-
nar with the trapping array (both located at z = 0). The 
addressing beam misalignment is only in the radial x-direc-
tion. Figure  7 is a collection of calculation results of the 
intensity variance as a function of the radial misalignment 
between the addressing beam and the center of the volume 
occupied by the trapped atom for a TEM00 Gaussian beam 
and super Gaussian beams of orders n = 4, 6, and 8.

In Fig. 7a we see the behavior of the intensity variance 
out to a radial distance equal to that of the separation dis-
tance between trap sites, or x = d = 3.8µm. For every 
value of n the intensity variance increases to a maximum 
value and then decreases again. This behavior of the value 
of the intensity variance corresponds to the rate of change 
of the intensity beam profile of the addressing beam for 
each value of n. The beam profiles of each value of n are 
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Fig. 7   (Color online) Calculated intensity variance for an atom with 
a temperature of 20 µK in a 459-nm wavelength TEM00 Gaussian 
beam, n =2, and super Gaussian beams of orders n =4, 6, and 8 as 
a function of the radial misalignment between the addressing laser 
and the trap site. Laser beam radii are the same as in Tables 1 and 2. 
Part (a) illustrates intensity variance values out to a radial misalign-
ment equal to that of the location of the nearest neighbor trap site of 
x = 3.8µm. Part (b) illustrates the intensity variance on a log scale 
for a radial misalignment of less than 1 µm
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previously illustrated in Fig.  1. For the n = 2 TEM00 
Gaussian beam, the intensity immediately starts falling 
with the radial distance away from the center of the beam. 
Consequently, the intensity variance immediately starts 
to increase even for a small radial misalignment of the 
addressing beam. The maximum value of the intensity vari-
ance (x ≈ 1 micron) also corresponds with the location of 
the highest rate of change, the inflection point, of the beam 
intensity profile. The relatively uniform regions of intensity 
at the center of the super Gaussian beam profiles result in 
a much lower intensity variance for small radial misalign-
ments (x < 1µm). Each of the higher super Gaussian expo-
nent values of n has a maximum intensity variance located 
at increasing values of the radial misalignment correspond-
ing to the inflection point of the beam profile being located 
further away from the center of the beam. Additionally, as 
observed in Fig. 1, higher values of n result in steeper sides 
of the beam profile which results in an increasing value for 
the maximum intensity variance.

Figure 7b shows the intensity variance on a logarithmic 
scale for small radial beam misalignments. As the numbers 
in Table 2 reveal, the intensity variance for no misalignment 

between the addressing beam and the trap site significantly 
decreases as n increases from 2 to 4 to 6. Then, due to the 
small on-axis intensity oscillations just beyond the beam 
waist for high values of n, the intensity variance increases 
from n = 6 to n = 8. These on-axis intensity oscilla-
tions near the beam waist plane for n = 8 are observed 
in Fig.  4b. As the n = 8 addressing beam is radially mis-
aligned the trapping volume walks off of the on-axis inten-
sity oscillations and into a region of more uniform intensity 
located between the optical axis and the wall of the beam. 
Hence, the intensity variance of the n = 8 beam initially 
decreases for increasing radial misalignment. For perfect 
trap-addressing beam alignment, or a radial misalignment 
less than 0.25 microns, the n = 6 super Gaussian beam pro-
vides the lowest intensity variance.

Finally, we investigate the intensity variance for an axial 
misalignment between the beam waist plane and the axial 
center of the trap site as a function of the order n of the 
super Gaussian beam. For these conditions it is assumed 
that the volume of space occupied by the trapped atom is 
centered around x = y = z = 0, and the propagation of the 
addressing beam is along the z-axis, i.e., along the radial 
center of the trapping volume. However, the beam waist 
plane of the addressing beam is not coplanar with the trap-
ping array, z = 0, but rather located at some other axial 
location where z > 0. Figure 8 is a collection of calculation 
results for the intensity variance for values of n from 2 to 8 
as a function of the axial misalignment between the trap-
ping volume and the beam waist plane of the addressing 
beam. Figure 8a illustrates the behavior of the intensity var-
iance over a large range of axial misalignment values, and 
Fig. 8b shows an expanded view of the intensity variances 
for an axial misalignment of less than 5 microns. Figure 8b 
reveals that for all values of n, and small to moderate axial 
misalignment, the intensity variance increases monotoni-
cally with an increase in the misalignment of the address-
ing beam. The intensity variance for n = 8 is higher than 
that for n = 6 due to the increase in the oscillations of the 
intensity along the central region of the addressing beam. 
The central intensity oscillations are observed in Fig.  4b. 
Overall, a super Gaussian order of n = 6 provides the low-
est intensity variance for all axial misalignment values less 
than 5  microns and radial misalignment values less than 
0.25 microns, due to the relatively uniform intensity over 
this volume of space, as can be observed in Figs. 2 and 3.

For even values of the super Gaussian power, the mini-
mum intensity variance for addressing beams having an 
axial misalignment of 6 µm or less occurs for a value of 
n = 6. Experimentally created super Gaussian beams may 
have a focal plane intensity distribution which varies from 
that of the desired theoretical beam profile. Therefore, we 
also investigate the intensity variance for a variety of super 
Gaussian powers around n = 6. The resulting intensity 
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Fig. 8   (Color online) Calculated intensity variance for an atom with 
a temperature of 20 µK in a 459-nm TEM00 Gaussian beam, n =2, 
and super Gaussian beams of orders n =4, 6, and 8 as a function of 
the axial misalignment between the beam waist of the addressing 
laser and the center of the trap site. Laser beam radii are the same as 
in Tables 1 and 2
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variances for n values ranging from 5.5 to 7.5 are reported 
in Table  3. We find that the minimum intensity variance 
occurs for a super Gaussian power of n = 6.5. Variations 
of ∆n = 0.5 result in small changes (≤33 %) in the inten-
sity variance, whereas ∆n = 1 results in a factor of 2 or 3 
increase in the intensity variance. We conclude that some 
level of deviation from the ideal beam shape is acceptable 
in an experimental setup. Note that the simulations pre-
sented in the next section are performed for n = 6, which 
is a slightly less than ideal case, meaning we could achieve 
even better results for n = 6.5 than are presented here.

3.3 � Simulation of Rabi oscillations

In this section, we investigate what type of intensity profile 
is best suited for the addressing laser beams used to drive 
single-qubit rotations. We use a pair of Raman laser beams 
with atoms trapped in the Gaussian beam array described 
in Sect.  2.3. The experimental challenges include crosstalk 
with atoms at neighboring trap sites and shifts in beam align-
ment resulting in changes of the differential AC Stark shifts 
and Rabi frequencies experienced by the atomic qubits. Any 
unintended changes in these result in incorrect laser pulse 
times, incomplete population transfer, and thus gate errors. 
We compare the Rabi oscillations generated by Gaussian 
and super Gaussian beams to assess which order n yields the 
most consistent Rabi oscillation amplitudes and frequencies.

We simulated Rabi oscillations between the hyperfine 
ground states 62S1/2,F = 3 and 62S1/2,F = 4 of 133Cs 
driven by Raman transitions via the 72P1/2 level. The two 
Raman laser beams used in this simulation have a wave-
length of 459  nm with a detuning of 20  GHz above the 
62S1/2 → 72P1/2, transition. For the simulation of Gauss-
ian addressing beams, we used a beam waist of 2.3 µm and 
a power of 5 µW per beam at the atoms. We performed a 
Monte Carlo simulation of the motion and atomic state 
evolution of an atom in the Gaussian beam array trap. The 
motion was determined by solving the classical equation 
d2ra
dt2

= F/ma with ra the atomic position and F = −∇UT 
the gradient force from the trap potential as given by Eq. 

(7). For typical experimental parameters the contribution 
to the force from the Raman light is negligible and will be 
neglected. We ran the simulation for each of our scenarios 
for 100 atoms, each placed in the trap according to a Gauss-
ian spatial distribution using Eqs. (9) and a Maxwellian 
velocity distribution in three dimensions for the given atom 
temperature. The motion was simulated with time steps 
of 1 µs up to a total time of 150 µs. The time steps were 
chosen to be much smaller than the trap oscillation periods 
of the atoms, since the radial trap frequency is ωx = 2π×

31.5 kHz and the axial trap frequency is ωz = 2π×3.2 kHz 
for the trap laser parameters we used (see Sect. 2.3). Based 
on the position of each atom at each time step, we then cal-
culated the differential AC Stark shift and on-resonance 
Rabi frequency at this position with Eqs. (14, 16) and used 
Eq. (11) to evolve the state of each atom. We tuned the 
Raman laser pair to the F = 3 and F = 4 hyperfine ground-
state splitting with AC Stark shifts for an atom located 
at the center of the trap and perfectly aligned addressing 
beams. Thus, ∆ from Eq. (11) is the change in differential 
AC Stark shift from that of an atom at the center. At this 
position, the differential AC Stark shift due to the Raman 
laser beams is −13.49 kHz, and the on-resonance Rabi fre-
quency is 23.4 kHz. For each scenario we investigated, we 
recorded the differential AC Stark shift due to the Raman 
laser beams, the effective on-resonance (Ω) and off-reso-
nance (Ω ′) Rabi oscillation frequencies, the 1/e Rabi oscil-
lation amplitude decay time, ta, and the F = 4 population, 
|ce(t)|

2, for π and 3π Raman pulse times. This allows us to 
compare the effects of atom temperature and laser beam 
misalignment on the consistency of the resulting quantum 
operations (e.g., π pulses) for different laser beam intensity 
profiles. For the differential AC Stark shift and the on-reso-
nance Rabi frequency, we report the average value for 100 
atoms at their initial positions. Their dependence on the 
laser intensity is identical [see Eqs. (16, 14)], so a larger 
on-resonance Rabi frequency is correlated with a larger 
(more negative) differential Stark shift. The off-resonance 
Rabi frequency and Rabi oscillation amplitude decay time 
were determined by fitting a curve of the form

to the |ce(t)|2 data, where A, B, Ω ′, ta, and tb are the five 
fit parameters. Ω ′ and ta from this fit are reported as off-
resonance Rabi frequency and 1/e Rabi oscillation ampli-
tude decay time here. Because the decay time of the Rabi 
oscillations was very sensitive to small variations in atom 
positions, we ran each scenario ten times and reported the 
mean and standard deviation of the results. Statistical outli-
ers based on the decay time (in units of π pulse time) were 
removed from the analysis using the modified Thompson 
tau method [24].

|ce(t)|
2
= A sin2

(

Ω ′t

2

)

e−t/ta
+ B

(

1− e−t/tb
)

Table 3   Intensity variance values of a 20 µK atom in a super Gauss-
ian addressing beam with no misalignment between the trap site and 
the 459-nm wavelength addressing laser for various super Gaussian 
power values between n = 5.5 and 7.5

n Beam radius (µm) σIΨ

5.5 3.04 0.00020

6 3.09 0.00007

6.5 3.13 0.00006

7 3.16 0.00008

7.5 3.19 0.00013
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We first investigated the atom-temperature dependence 
of the Rabi oscillations. Figure 9 shows the resulting oscil-
lations in a pair of Gaussian Raman laser beams for atom 
temperatures of 5, 10, and 20 µK, respectively. The data 
points shown are the average F = 4 hyperfine ground-state 
population for all 100 atoms, and the error bars indicate 
±σ variations for each Raman laser pulse time. The data 
shown in the graphs are one representative sample out of 
ten repetitions of the simulation of 100 atoms. The numeri-
cal results are listed in Table 4.

We find that in this temperature range, the differen-
tial AC Stark shift due to the Raman laser beams and the 
effective on- and off-resonance Rabi frequencies drop by 
a few percent from their 5-µK values (which are within 
1 % of those for an atom at the center). The average con-
tributions to the differential AC Stark shift due to the trap 
laser are ∆acT = 2π × 0.684(4) kHz for a 5-µK atom, 2π×
0.722(7) kHz for a 10-µK atom, and 2π×0.809(6) kHz for 
a 20-µK atom. The π and 3π Raman pulse time popula-
tions are within 1 % of the 5-µK value, with the 3π pop-
ulations being lower for larger temperatures. The decay 
time ta is approximately a factor of 20 shorter for 20 µK 
than for 5 µK, but it is still many times the duration of a π 
pulse. Figure 9 shows that the spread of the F = 4 popu-
lation increases significantly (by a factor of 5–10) with 
temperature.

The higher the atom temperature, the faster and farther 
the atoms move in the trap. Farther away from the trap 
center on average, atoms sample a lower intensity of the 
Gaussian beam, leading to the observed reductions in dif-
ferential AC Stark shift and Rabi frequencies (see Eqs. 16 
and 14). Because the atoms move farther at higher tempera-
tures, they also sample a larger range of intensities, leading 
to a larger range of differential Stark shifts and Rabi fre-
quencies. This effectively results in a range of Rabi oscilla-
tion amplitudes [see Eq. (13)], causing the spread of F = 4 
population observed in Fig.  9. Averaging the oscillations 

Fig. 9   F = 4 hyperfine ground-state population for Rabi oscillation 
between F = 3 and F = 4 states for Gaussian Raman laser beams for 
atom temperatures of a 5 µK, b 10 µK, c 20 µK

Table 4   Rabi oscillation results for atoms of various temperatures T in Gaussian (n = 2) and 20 µK atoms in super Gaussian (n = 4, 6, 8) 459-
nm wavelength addressing laser beams that are aligned with the trap site

The parameters listed are the differential AC Stark shift ∆acR due to the Raman lasers, the effective on-resonance (Ω) and off-resonance (Ω ′) 
Rabi frequencies, the 1/e Rabi oscillation amplitude decay time ta, and the F = 4 population for π and 3π Raman pulse times, respectively. For 
an atom at the center of the trap and the addressing laser beams, ∆acR = −2π × 13.49 kHz and Ω = 2π × 23.40 kHz. The average contributions 
to the differential AC Stark shift due to the trap laser are ∆acT = 2π × 0.684(4) kHz for a 5-µK atom, 2π×0.722(7) kHz for a 10-µK atom, and 
2π×0.809(6) kHz for a 20-µK atom

n T (µK) ∆acR

2π
 (kHz) Ω

2π
 (kHz) Ω ′

2π
 (kHz) ta (ms) ta (π pulse time ×100) π pop. (%) 3π pop.(%)

2 5 −13.398 (9) 23.233 (15) 23.23 (2) 22 (6) 10 (3) 99.863 (4) 99.839 (9)

2 10 −13.314 (12) 23.09 (2) 23.04 (2) 4.7 (7) 2.1 (3) 99.892 (4) 99.78 (4)

2 20 −13.11 (3) 22.73 (5) 22.64 (6) 1.12 (14) 0.51 (6) 99.81 (2) 99.0 (2)

4 20 −13.553 (7) 23.502 (12) 23.48 (1) 24 (4) 11 (2) 99.943 (3) 99.92 (2)

6 20 −13.4939 (3) 23.3994 (5) 23.388 (2) 67 (7) 32 (3) 99.9162 (13) 99.979 (3)

8 20 −13.493 (2) 23.397 (3) 23.384 (2) 58 (10) 28 (5) 99.913 (2) 99.976 (4)
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of 100 atoms with varying off-resonance Rabi frequencies 
results in the observed decay of the amplitude of the aver-
aged oscillation. Thus, higher-temperature atoms, which 
have the higher range of Rabi frequencies, have shorter 
decay times of their average Rabi oscillation.

Next, we investigated how the use of super Gauss-
ian addressing laser beams affects the Rabi oscillations. 
We repeated the simulations for an atom temperature of 
20 µK for super Gaussian beams of orders n = 4, 6, and 8. 
The beam waists used are listed in Table 1 and were cho-
sen such that a radial beam displacement of 150 nm would 
result in the same intensity at a neighboring trap site as 
an aligned Gaussian beam with the parameters described 
above. The intensity at the center of each beam was set to 
match that of the Gaussian case, thus requiring more power 
per beam than the Gaussian beams.

As shown in Table 4, the differential AC Stark shift due to 
the Raman laser beams and the effective on- and off-resonance 
Rabi frequencies for super Gaussian beams are within a frac-
tion of a percent of the values for an atom at the center of the 
trap and addressing beams. They are lowest for the Gaussian 
beam (n = 2), highest for the n = 4 super Gaussian beam, and 
then lower and lower for n = 6 and n = 8, with n = 6 hav-
ing the values closest to those for an atom at the center of the 
trap and addressing beams. The Rabi oscillation amplitude 
decay times and the π and 3π populations are higher for super 
Gaussians than those for a Gaussian beam and are lower the 
farther off their Stark shift, and Rabi frequencies are from 
their center values. Thus, they are highest for the n = 6 super 
Gaussian laser beam. The decay times are much improved (by 
a factor of approximately 20–60) when using super Gaussian 
beams. For n = 4 the decay time is as long as that of a 5-µK 
atom sample in a Gaussian beam, and the decay times for 
n = 6 and n = 8 are about three times larger.

These results are consistent with those from Secs. 3.1 
and 3.2. While the intensity of a Gaussian beam drops off 
in all directions, that of an n = 4 super Gaussian increases 
away from the focal plane, leading to the observed increase 
in differential Stark shift and Rabi frequencies. Super 
Gaussian beams of order n = 6 have a flat intensity pro-
file near the trap center along the axial direction, making 
this the most constant intensity profile in all three dimen-
sions and thus having differential Stark shift and Rabi fre-
quency values closest to those at the center of the trap. The 
n = 8 super Gaussian has an intensity profile that oscillates 
around the focal plane value along the axial direction, on 
average leading to differential AC Stark shifts and Rabi 
frequencies very close to the center ones. The Rabi oscilla-
tion decay times match the trends of the intensity variance 
shown in Table 2, with higher intensity variance correlated 
with shorter decay times. Because n = 6 has the lowest 
intensity variance, the differential AC Stark shift changes 
the least as the atom moves around the trap, leaving ∆ close 

to zero and resulting in a smaller spread in Rabi oscilla-
tion amplitude and frequency, as observed by the longer 
Rabi oscillation decay times. Any experimental setup has a 
limit to the coldest atom temperature that can be achieved. 
Within these constraints, our results suggest that switching 
to a super Gaussian beam such as n = 6 can much improve 
the consistency of the resulting Rabi oscillations (less 
spread, longer decay times) and thus quantum operations.

In any experiment that requires addressing of a sin-
gle trapped atom, addressing laser beam alignment is 
critical. To investigate the dependence of the Rabi oscilla-
tions on beam alignment, we repeated the simulation for 

Fig. 10   F = 4 hyperfine ground-state population for Rabi oscil-
lations between F = 3 and F = 4 states for Gaussian Raman laser 
beams for an atom temperature of 20µK and a radial Raman beam 
misalignment of a 0.25µm, b 0.5µm, c 1µm
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a radial Raman beam misalignment from the trap center 
of 0.25, 0.5, and 1µm for an atom temperature of 20µK 
for a Gaussian (n = 2) addressing beam pair. Because the 
Raman beams share the same optical path, we only inves-
tigated a common shift of both Raman laser beams. The 
resulting time-dependent Raman F = 4 populations are 
shown in Fig. 10. The corresponding numerical results are 
shown in Table 5.

We see that radial beam misalignment has significant 
effects on all of the quantities we calculated. The differ-
ential Stark shift and the on- and off-resonance Rabi fre-
quencies drop to about two-thirds of their perfectly aligned 
values at 1µm radial beam misalignment. Misalignment 
of 0.25µm reduces the decay time by a factor of two, and 
misalignment of 1µm reduces decay times to only a few 
multiples of the π pulse time. Consequently, the F = 4 
population at π and 3π pulse times is significantly reduced, 
dropping as low as 89 and 78 %, respectively, for 1 µm of 
radial misalignment. Furthermore, we see that the spread in 
F = 4 population reaches values of about 33 % at 0.15 ms 
when misaligning the Gaussian addressing beams radially.

These results are consistent with those of Sects.  3.1 
and 3.2. For a Gaussian (n = 2) beam, as the radial mis-
alignment is increased, the intensity sampled by the atoms 
drops at the edge of the Gaussian beam (see Fig. 1), lead-
ing to a drop in differential AC Stark shift and Rabi fre-
quencies. This means that if the Raman beams shift at this 
level after the pulse times have been carefully calibrated, 
the pulse times will be incorrect and the quantum operation 
performed will be different than intended. Also, with radial 
misalignment the intensity variance of the Gaussian beam 
increases (see Fig. 7), since its intensity changes more rap-
idly as we reach its inflection point around 1µm. The atoms 
thus sample a larger range of intensities, resulting in a larger 
range of differential AC Stark shifts and thus Rabi oscilla-
tion amplitudes and frequencies. This leads to the spread in 
F = 4 populations seen in Fig. 10 and faster decay.

Again, we investigated how super Gaussian address-
ing laser beams performed in this scenario. The results are 
shown in Fig.  11 and Table  5. In each case, we assumed 
an atom temperature of 20µK and a radial beam mis-
alignment of 1µm. The amount of misalignment encoun-
tered in the laboratory is determined by the limitations of 
the experimental setup. We therefore assumed the same 
amount of misalignment for all super Gaussian orders, 
regardless of beam size. We find that the higher the order 
n of super Gaussian used, the closer the differential Stark 
shift and Rabi frequencies, and the π and 3π F = 4 popu-
lations get to those for perfect radial alignment, deviating 
only a few hundredths of percent or less from the values at 
the center of the trap. Similarly, the higher the order n, the 
longer the decay times. For n = 4, the decay time is more 
than double that of a Gaussian beam that is only misaligned 
by 0.25µm , and that for n = 8 is almost 100 times as large. 
While for n = 4 the spread in F = 4 population is compa-
rable to that of the aligned Gaussian beam case, the spread 
for n = 6 is less than that of a 5µK atom in an aligned 
Gaussian laser beam, and n = 8 has an even smaller spread 
than that.

This is consistent with Sects.  3.1 and 3.2. Figure  1 
shows that the higher the super Gaussian order n, the flat-
ter the intensity profile remains around the 1µm range 
examined here, making all parameters closer to those for 
an atom at the center of the trap for aligned addressing 
beams. Figure 7 shows that at 1µm radial misalignment the 
intensity variance is smaller the higher the super Gaussian 
order n. Less intensity variance implies less variation of the 
differential AC Stark shift and consequently less spread in 
Rabi oscillation amplitudes, leading to the observed reduc-
tion in F = 4 population spread (see Fig. 11), and frequen-
cies, resulting in longer decay times. The results for this 
scenario are better than those for a 5-µK atom sample in a 
well-aligned Gaussian beam in all aspects. Thus, the use of 
super Gaussian addressing lasers can significantly alleviate 

Table 5   Rabi oscillation results for atoms with a temperature of 
20 µK in Gaussian beams (n = 2) with varying amounts of radial 
misalignment ∆x between the trap site and the focus of the 459-

nm wavelength addressing laser beams, and super Gaussian beams 
(n = 4, 6, 8) with a radial misalignment of 1 µm

The parameters listed are the differential AC Stark shift ∆acR due to the Raman lasers, the effective on-resonance (Ω) and off-resonance (Ω ′) 
Rabi frequencies, the 1/e Rabi oscillation amplitude decay time ta, and the F = 4 population for π and 3π Raman pulse times, respectively. For 
an atom at the center of the trap and the addressing laser beams ∆acR = −2π × 13.49 kHz and Ω = 2π × 23.40 kHz. The average contribution 
to the differential AC Stark shift due to the trap laser is ∆acT = 2π × 0.809(6) kHz

n ∆x (µK) ∆acR

2π
 (kHz) Ω

2π
 (kHz) Ω ′

2π
 (kHz) ta (ms) ta (π pulse time ×100) π pop. (%) 3π pop. (%)

2 0.25 −12.83 (5) 22.25 (8) 21.79 (6) 0.50 (5) 0.23 (2) 99.54 (5) 97.0 (3)

2 0.5 −12.01 (9) 20.8 (2) 19.9 (1) 0.204 (15) 0.085 (6) 98.69 (8) 93.8 (7)

2 1 −9.1 (2) 15.8 (3) 15.55 (8) 0.193 (13) 0.064 (4) 89.1 (5) 77.8 (1.3)

4 1 −13.03 (3) 22.60 (6) 22.26 (3) 1.1 (2) 0.50 (8) 99.79 (3) 98.6 (2)

6 1 −13.486 (7) 23.385 (12) 23.361 (8) 18 (4) 8.4 (1.9) 99.904 (3) 99.91 (2)

8 1 −13.498 (3) 23.406 (6) 23.394 (4) 45 (7) 22 (3) 99.919 (2) 99.975 (9)
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the effects of radial misalignment on the Rabi oscillations 
of an atomic qubit.

Thus far, we have ignored the effects of misalignment 
on crosstalk. At 1µm of radial misalignment, the cross-
talk intensity at the location of a neighboring site is higher 
than that of an aligned Gaussian beam. For direct compar-
ison, we also carried out the Rabi oscillation simulations 
for 150-nm radial misalignment, the amount for which all 
super Gaussian orders have the same crosstalk intensity 
at a neighboring site as an aligned Gaussian beam, and as 
each other, due to our choice of beam waists (see Table 1). 
We found the following decay times: 25(3) ms for n = 4, 
69(12) ms for n = 6, and 70(14) ms for n = 8. Thus, with 
the same crosstalk intensity, the decay time for the n = 6 
super Gaussian addressing beam is over 60 times longer 
than that of a well-aligned Gaussian beam (see Table 4).

Finally, we explored how sensitive the Rabi oscillations 
are to axial beam misalignment. Both the atom confine-
ment in the Gaussian beam array trap and the Raman beam 
alignment precision may be worse by a factor of approxi-
mately ten in the axial direction, so we calculated the Rabi 
oscillations for an atom temperature of 20µK for axial 
beam misalignments of 2.5µm and 5µm for Gaussian 
beams and also examined super Gaussian beams at 5µm 
axial misalignment. The results are listed in Table 6.

For a Gaussian beam, we find that as the axial mis-
alignment is increased to 2.5µm and then 5µm, there is 
a small drop in differential Stark shift and Rabi frequen-
cies, which can be explained by the small drop in intensity 
of the Gaussian beam in this axial range (see Fig. 4). The 
increase in intensity variance (see Fig. 8) is so gradual that 
its effects on the decay time and the F = 4 populations at 
π and 3π times are small to insignificant. We conclude that 
Gaussian addressing beams are not very sensitive to axial 
misalignment.

For super Gaussian Raman beams, the results follow the 
same trends as those of the perfectly aligned case for the 
same reasons. As shown in Fig. 4, the n = 4 super Gaussian 

Fig. 11   F = 4 hyperfine ground-state population for Raman transi-
tion between F = 3 and F = 4 states for super Gaussian Raman laser 
beams for an atom temperature of 20µK and a radial Raman beam 
misalignment of 1µm. a n = 4, b n = 6, c n = 8

Table 6   Rabi oscillation results for atoms with a temperature of 
20µK in Gaussian (n = 2) and super Gaussian (n = 4, 6, 8) beams 
with axial misalignment ∆z = 2.5µm (n = 2) and 5 µm (n = 2, 4, 6, 

and 8) between the trap site and the focus of the 459-nm wavelength 
addressing laser beams

The parameters listed are the differential AC Stark shift ∆acR due to the Raman lasers, the effective on-resonance (Ω) and off-resonance (Ω ′) 
Rabi frequencies, the 1/e Rabi oscillation amplitude decay time ta, and the F = 4 population for π and 3π Raman pulse times, respectively. For 
an atom at the center of the trap and the addressing laser beams ∆acR = −2π × 13.49 kHz and Ω = 2π × 23.40 kHz. The average contribution 
to the differential AC Stark shift due to the trap laser is ∆acT = 2π × 0.809(6) kHz

n ∆z (µK) ∆acR

2π
 (kHz) Ω

2π
 (kHz) Ω ′

2π
 (kHz) ta (ms) ta (π pulse time ×100) π pop. (%) 3π pop. (%)

2 2.5 −13.06 (2) 22.64 (4) 22.57 (4) 1.13 (14) 0.51 (6) 99.79 (2) 98.98 (14)

2 5 −12.91 (4) 22.39 (7) 22.31 (6) 1.5 (3) 0.69 (14) 99.67 (5) 98.9 (2)

4 5 −14.06 (3) 24.38 (6) 24.34 (2) 1.8 (2) 0.87 (9) 99.62 (5) 98.5 (2)

6 5 −13.479 (12) 23.37 (2) 23.375 (11) 19 (5) 9 (2) 99.87 (2) 99.82 (8)

8 5 −13.53 (2) 23.45 (4) 23.46 (2) 1.6 (3) 0.76 (14) 99.68 (7) 98.7 (3)
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has a higher intensity at z = 5µm than at the focal plane, 
leading to a larger differential Stark shift and increased 
Rabi frequencies, both compared to the Gaussian beam 
and the aligned case. The n = 6 super Gaussian beam has 
a flat axial intensity profile, resulting in differential Stark 
shifts and Rabi frequencies closest to those for an atom at 
the center of the trap for aligned Raman laser beams. The 
n = 8 super Gaussian axial intensity profile is oscillating 
about the focal plane intensity, leading to results very close 
to those for an atom at the center for aligned addressing 
beams. The decay time of the Rabi oscillation amplitude 
and the F = 4 populations for orders n = 2, 4, and 8 match 
within their uncertainties, while those for n = 6 are signifi-
cantly larger. The decay time for n = 6 is approximately 
ten times longer than those for the other orders, stemming 
from its lower intensity variance as shown in Fig.  8 and 
thus narrower range of Rabi frequencies.

Overall, these results indicate, that for the cases explored 
here, the n = 6 super Gaussian beam would be the ideal 
choice for Raman addressing beams, least sensitive against 
radial and axial misalignment, providing the most even 
intensity profile for atoms moving around in the Gaussian 
beam array trap, resulting in Rabi oscillations with long 
decay times and little spread in F = 4 population.

We also repeated the simulations for Raman 
laser beams with a 100-GHz detuning from the 
62S1/2,F = 3, 4 → 72P1/2,F = 4 transitions, respectively, 
and five times the laser power. This keeps the on-resonance 
Rabi frequency approximately the same while reducing the 
differential AC Stark shift due to the Raman lasers by about 
a factor of six. The differential AC Stark shifts, Rabi fre-
quencies, Rabi oscillation amplitude decay times, F = 4 
populations at π and 3π times, and spread in F = 4 popu-
lation follow the same trends with temperature and axial 
misalignment as the 20-GHz results. However, the effects 
of radial misalignment on the decay time and the spread of 
the F = 4 population were significantly reduced. This con-
firms that the spread in Rabi oscillation amplitudes (lead-
ing to population spread) and frequencies (resulting in Rabi 
oscillation decay) is caused by the spread in the differential 
AC Stark shift, since that is lower by a factor of six in the 
100-GHz case. This means that an increase in laser power 
and corresponding increase in laser detuning are also a way 
to improve the consistency of the resulting quantum opera-
tions. However, laser power is limited, so increasing the 
detuning may not be possible in a given experimental setup.

Thus far, we have assumed that the Raman laser beams 
are free from any laser power noise. We repeated each 
simulation for 2 % laser power noise on the Raman laser 
beams. For each atom in the simulation, a laser power 
number in the ±1  % range is randomly generated and 
stays constant through the whole simulation. We thus are 
assuming that the laser noise varies slowly compared to the 

timescales investigated here (0.15 ms). We found that laser 
power noise has little to no effect on the differential AC 
Stark shift due to the Raman lasers, the Rabi frequencies, 
and the F = 4 populations at π and 3π pulse times. How-
ever, in some cases the decay times were reduced by factors 
of two or three with stronger effects for cases with larger 
decay times. Since the most strongly affected cases were 
those with large decay times, this reduction does not have 
a significant effect on the overall performance of quantum 
operations on the π to 3π pulse timescales. Thus, the effects 
of noise are negligible compared to the effects of atom tem-
perature and beam misalignment.

Overall, we found that while atom temperature and laser 
noise impact the Rabi oscillations, the most significant fac-
tor influencing the effective off-resonant Rabi frequency, 
Rabi oscillation amplitude decay time, and F = 4 popula-
tion spread is the Raman beam alignment. Super Gaussian 
laser beams have a smaller intensity variance, which sig-
nificantly reduces the sensitivity of the quantum operation 
performed to alignment. Therefore, the use of super Gauss-
ian Raman addressing beams may help reduce downtime 
for repeated beam alignment and improve the consistency 
of quantum operations. Specifically, the flat radial and axial 
intensity profile of the n = 6 super Gaussian beam makes it 
ideal as an addressing laser beam for quantum operations 
on atomic qubits.

4 � Conclusions

We have presented a detailed parametric study of the 
effects of finite temperature, radial and axial beam mis-
alignment, and laser noise on the fidelity of stimulated 
Raman single-qubit gates. Our results show that a high-
order super Gaussian beam provides more uniform inten-
sity and greatly increased coherence of Rabi oscillations, as 
presented in Tables 4, 5, and 6, together with less crosstalk 
for optically trapped atomic qubits.

The optimal choice of the super Gaussian index n will 
depend on details of the experimental environment. While 
the super Gaussian beams provide lower intensity vari-
ance and less crosstalk for small axial or radial misalign-
ment, they perform worse than a Gaussian beam for large 
misalignment. For radial misalignment of not more than 
∼ 150 nm and axial misalignment of not more than ∼2 µm 
we find a n = 6 super Gaussian to be near optimal. These 
misalignment values are realistic estimates based on recent 
experiments [3, 23]. For larger misalignment values a lower 
order should be chosen as can be seen from Fig.  6. On 
the other hand, if it is possible to ensure very small beam 
misalignment then the lowest possible intensity variance, 
and best possible Rabi oscillation fidelity, is obtained for 
n = 6.5 as is shown in Table  3. Variations of n by ±0.5 
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about this value have only a small effect on the intensity 
variance.

It is apparent from our results that the super Gaussian 
beam has only a minor effect on the amplitude achieved in 
a π or 3π pulse, but has a large influence, by up to a factor 
of 60, on the decay time of the Rabi oscillations. Very high-
fidelity gates as needed for scalable quantum computation 
will likely be based on composite pulse techniques [25] to 
minimize sensitivity to imperfect control of the pulse area. 
Since composite pulses imply larger total pulse areas, the 
increase of the decay time afforded by the super Gaussian 
pulse will be particularly useful in conjunction with com-
posite pulses.

We have studied the super Gaussian beam profile 
because it has a compact analytical form and is readily 
visualized. This leaves open the question of what the 
global optimal beam shape might be. The choice of an 
optimal shape will strongly depend on the experimental 
conditions. If there is no experimental beam misalign-
ment and the atoms are very cold and well localized then 
a high-order beam profile with excellent uniformity is 
to be preferred. Allowing for misalignment and atomic 
motion a lower-order profile with smoothly varying 
intensity gives better performance. The specific choice 
cannot be predicted in general and will depend on actual 
parameters.

In order to reap full advantage of using a specific beam 
profile it is of course necessary to generate such a pro-
file experimentally. There are several methods available 
for beam shaping of top-hat, or similar profiles, including 
aspherical lenses [26], diffractive optical elements [27, 28], 
and computer-controlled spatial light modulators (SLMs) 
[29]. Although arbitrary beam shapes with desired ampli-
tude and phase profiles can in principle be produced using 
a SLM in holographic mode, there remains the experimen-
tal challenge of compensating for imperfections due to 
optical elements and vacuum windows. A notable advance 
was reported recently in [30] where a SLM together with 
a Shack-Hartmann wave-front sensor was used to correct 
for imperfections in the optical train and obtain a uniform 
array of intensity spots with a standard deviation of only 
1.4 %. Based on these techniques it should be possible to 
create essentially any desired beam profile with accuracy 
at the 1 % level. Such accuracy together with the weak sen-
sitivity of the atom-averaged intensity variance with super 
Gaussian index presented in Table 3, suggests that perfor-
mance comparable to that calculated here will be possible 
in real experiments.
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Appendix 1: On‑resonance Rabi frequency 
and differential AC Stark shift for two‑photon 
Raman transitions via 72P1/2 in 133Cs 
including hyperfine splitting

The Rabi oscillations investigated in this work are driven 
via a Raman process from the F = 3,mF = 0 hyper-
fine ground state of the 62S1/2 manifold in 133Cs to its 
F = 4,mF = 0 hyperfine ground state via the 72P1/2 mani-
fold using two laser beams. To treat this kind of Rabi oscil-
lation, we repeat the steps from Sect. 2.4 for a Λ-type three-
level system with two lasers tuned to the two transitions 
of the Raman process. For detunings large enough so that 
the excited-state population is small, we can adiabatically 
eliminate the 72P1/2 state, resulting in an effective two-
level Rabi oscillation with an on-resonance Rabi frequency 
of

where Ω1,2 are the single-photon on-resonance Rabi fre-
quencies for the 62S1/2,F = 3,mF = 0 → 72P1/2 and 
72P1/2 → 62S1/2,F = 4,mF = 0 transitions, respectively. 
∆R is the detuning of the first Raman laser beam from 
the 62S1/2,F = 3 → 72P1/2 (fine structure level) transi-
tion, and we have assumed that the detuning of the second 
Raman laser from the 62S1/2,F = 4 → 72P1/2 transition is 
the same. Equation (20) is valid for two-photon resonance 
or when the departure from two-photon resonance is small 
compared to ∆R.

Taking into account the hyperfine splitting of the 72P1/2 
level, we have to sum over all possible intermediate states, 
resulting in

where F ′,F1,2 are the total angular momentum quan-
tum numbers of the intermediate, initial, and final states, 
respectively, Ω1,F1F

′ and Ω2,F′F2 are the single-photon on-
resonance Rabi frequencies for the F1 → F ′ and F ′

→ F2 
transitions, respectively, and ∆R,F′ is the detuning of the 
first Raman laser beam from the F1 → F ′ transition.

In 133Cs, we have F1 = 3, F2 = 4, and F ′
= 3, 4. We 

thus find for the two-photon on-resonance Rabi frequency

where we used primes to indicate quantum numbers per-
taining to the excited states. The detunings from the 

(20)Ω =

Ω1Ω
∗

2

2∆R

,

Ω =

∑

F′

Ω1,F1F
′Ω∗

2,F′F2

2∆R,F′

,

Ω =

Ω1,33′Ω
∗

2,3′4

2∆R,3′
+

Ω1,34′Ω
∗

2,4′4

2∆R,4′
,
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72P1/2 hyperfine states are ∆R,3′ = ∆R −∆F′3 and 
∆R,4′ = ∆R −∆F′4. Here, ∆F′3 = −2π × 212.3MHz and 
∆F′4 = 2π × 165.1MHz are the hyperfine shifts from the 
72P1/2 fine structure level to the F ′

= 3, 4 hyperfine states, 
respectively.

The one-photon Rabi frequencies are 
Ωi,FiFf = Ωi,0Ω̃FiFf  with Ωi,0 = Eie�7

2P1/2||r||6
2S1/2�/� , 

where Ei is the electric field amplitude of Raman laser 
i = 1, 2, e�72P1/2||r||6

2S1/2� is the reduced dipole matrix 
element for the 62S1/2 → 72P1/2 transition, e is the ele-
mentary charge, and

for a Raman absorption and

for a stimulated Raman emission. Here, CF′,mF1+q1
F1,mF1,1,q1

 and 
C
F2,mF1+q1−q2
F′,mF1+q1,1,−q2

 are Clebsch–Gordan coefficients, and

For our specific transitions in 133Cs, 
62S1/2,F = 3,mF = 0 → 72P1/2,F = 3, 4,mF = 1 and 
72P1/2,F = 3, 4,mF = 1 → 62S1/2,F = 4,mF = 0   , 
the relevant quantum numbers are the initial and final 
total electron angular momentum quantum numbers 
J1 = J ′ = 1/2, the nuclear spin quantum number I = 7/2 , 
the initial magnetic quantum number mF1 = 0, and we 
use circularly polarized Raman laser beams such that the 
z-components of the angular momentum of the absorbed 
and emitted photons are q1 = q2 = 1. With these, we find

The reduced dipole matrix element for the 62S1/2 → 72P1/2 
transition in 133Cs is e�72P1/2||r||6

2S1/2� = 0.276ea0 [19], 
where a0 is the Bohr radius.

Altogether, we find the two-photon on-resonance Rabi 
frequency to be

To find the total Stark shift of each of the hyperfine ground 
states, we need to add the Stark shifts due to the first and 
second Raman laser beams, so

Ω̃F1F
′ = c

J ′,I ,F′

J1,I ,F1
C
F′,mF1+q1
F1,mF1,1,q1

Ω̃F′F2 = c
J1,I ,F2
J ′,I ,F′ C

F2,mF1+q1−q2
F′,mF1+q1,1,−q2

c
J ′,I ,Fj
J1,I ,Fi

= (−1)1+I+Fi+J ′
√

2Fi + 1

{

J1 I Fi

Fj 1 J ′

}

.

Ω̃33′ = c
1/2,7/2,3
1/2,7/2,3C

3,1
3,0,1,1 = 1/4,

Ω̃3′4 = c
1/2,7/2,4
1/2,7/2,3C

4,0
3,1,1,−1 = 1/4,

Ω̃34′ = c
1/2,7/2,4
1/2,7/2,3C

4,1
3,0,1,1 =

√

5/48,

Ω̃4′4 = c
1/2,7/2,4
1/2,7/2,4C

4,0
4,1,1,−1 =

√

5/48.

Ω =

Ω1,0Ω
∗

2,0

32

(

1

∆R −∆F′3

+

5/3

∆R −∆F′4

)

.

(21)∆ac,F = ∆ac,F,R1 +∆ac,F,R2

For each hyperfine ground state, we must sum over the con-
tributions due to each of the hyperfine states of the 72P1/2 
manifold, resulting in

Thus, the AC Stark shift of the F = 3 hyperfine ground 
state due to the first Raman laser is

Similarly, the contribution to the AC Stark shift due to the 
second Raman laser is

where ∆hf = 2π × 9.192631770  GHz is the ground-state 
hyperfine splitting of 133Cs.

The contribution of the first Raman laser to the AC Stark 
shift of the F = 4 hyperfine ground state is

Here, we have used

and

Finally, the contribution of the second Raman laser beam to 
the AC Stark shift of the F = 4 ground state is

The differential Stark shift between the F = 3 and F = 4 
hyperfine ground states is

∆ac,F,R1/R2 =

∑

F′

|ΩFF′ |
2

4∆R,F′

.

∆ac,3,R1 =
|Ω1,33′ |

2

4∆R,3′
+

|Ω1,34′ |
2

4∆R,4′

=

|Ω1,0|
2

64

(

1

∆R −∆F′3

+

5/3

∆R −∆F′4

)

.

∆ac,3,R2 =

|Ω2,33′ |
2

4
(

∆R,3′ −∆hf

) +

|Ω2,34′ |
2

4
(

∆R,4′ −∆hf

)

=

|Ω2,0|
2

64

(

1

∆R −∆F ′3 −∆hf

+

5/3

∆R −∆F ′4 −∆hf

)

,

∆ac,4,R1 =

|Ω1,43′ |
2

4
(

∆R,3′ +∆hf

) +

|Ω1,44′ |
2

4
(

∆R,4′ +∆hf

)

=

|Ω1,0|
2

64

(

1

∆R −∆F ′3 +∆hf

+

5/3

∆R −∆F ′4 +∆hf

)

.

Ω̃43′ = c
1/2,7/2,3
1/2,7/2,4C

3,1
4,0,1,1 = −1/4.

Ω̃44′ = c
1/2,7/2,4
1/2,7/2,4C

4,1
4,0,1,1 = −

√

5/48.

∆ac,4,R2 =
|Ω2,43′ |

2

4
(

∆R,3′
) +

|Ω2,44′ |
2

4
(

∆R,4′
)

=

|Ω2,0|
2

64

(

1

∆R −∆F′3

+

5/3

∆R −∆F′4

)

.

∆acR = ∆ac,4 −∆ac,3.
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In this work, we used two Raman laser beams of identical 
power, waist, and alignment, so E1 = E2, and consequently
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